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Theoretical background



Smooth distribution of the nonlinearity

What we start with: What we want:
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Nonlinear magnets placement
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Alternative discretization strategy
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Algorithm

1. Pick an integrator and a step in phase [ \Ijh ]
AQ n

2. Set optics with the step in phase Y _

prescribed by the integrator (higher orders H H

integrators may have non constant step) m u R
< »le » < » S
“h/2  hh h/2

3. Set nonlinear magnet strength according

to similarity transformation with betatron [ B ( S1 ) o K, oB~ 1 ( s )]
amplitude matrix




Connection to the lattice
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Connection to the lattice

[ Xp = Rp o Kp Xy J
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Transformation of the nonlinear kick




Connection to the lattice

Step in phase
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Transformed nonlinear kick
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Flow of the thin magnet
Length of the magnet



Connection to the lattice

Constant!
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Experimental proposal and simulations
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Ruth lattice
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Octupoles arrangement (equal phase)
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Ruth lattice (IOTA Run-2 configuration)

IOTA V8.6 Octupole channel 3
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Ruth lattice. Simulations.

Simple model

« The model of the machine arc is a map characterized by
= Beta and alpha functions at entrance and exit
= Dispersion at entrance and exit
= Phase advances (x, y, z)
s Chromaticity

« Octupole channel is modeled as five thin multipoles, separated by drifts

Full lattice model

« Thin element tracking



Simple model: ideal case
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Amplitude space.
A=50 corresponds to beam pipe aperture in IOTA

Tune space. Q,=0.41
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Simple model with imperfections

Ay

Case 1: Case 2: Case 3:
2% random error of octupole gradient Same as 1 + Same as 2 +
0.01 error of phase advance 5% error of beta-function

through accelerator arc of accelerator arc



Full lattice simulations
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50.

Octupoles on
DA slightly improves, still dominated by sextupoles

Octupoles off
Corrected chromaticity (Ch=Cv=0)



Yoshida lattice

Yoshida forth order method AQ
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« Implement it with 3 of 4 IOTA sextupoles



Yoshida lattice (IOTA Run-2 configuration): . .,
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Simulations summary

- Ruth lattice could be implemented with 5 octupoles with realistic
imperfections and will produce strongly nonlinear system

» Strong chromaticity, if uncorrected, complicates the dynamics

= The strength of IOTA octupole magnets limits the attainable tune shift to
0.02

= Chromaticity correction with the sextupoles available in Run-2 (four
magnets SC1R, SC2R, SCiL, SC2L) limits dynamical aperture but still
allows reasonable measurements

» Yoshida lattice is feasible for IOTA.

= Only preliminary simplified tracking was performed.
= Error analysis and additional simulations are in progress.



Measurables

 Tune footprint

» 4D Hamiltonian

- Potentially real Poincare surface of section with synclight and

BPM. (x,y for example with one of the transverse momentums
fixed)



Summary



- Nonlinear integrable lattice can be implemented with just few
magnets and can be tested at IOTA.

 Ruth lattice potentially can be implemented in Run-3 as octupoles
remain in place. New optics need to be developed and
commissioned.

» Yoshida lattice could be tested in Run-4.

- Both lattices require minimum machine modification.



Thank you!




